Nùmer rassional
Vai alla navigazione
Vai alla ricerca
Stamp:Prinsipi Ch'as consìdera ël prodot cartesian dj'ansem dij nùmer antregh e . Ansima a definioma la relassion
- .
Costa a arzulta esse na relassion d'equivalensa. Për definission, le classe d'equivalensa a son ciamà nùmer rassionaj. L'ansem dij nùmer rassionaj a l'é ëd sòlit denotà . As trata ëd n'ansem numeràbil.
La classa d'equivalensa, visadì ël nùmer rassional, a l'é soens arpresentà sota forma 'd frassion . Le frassion e as diso equivalente s'a arpresento ël midem nùmer rassional (visadì ad=bc). Ant la frassion :
- ël nùmer a as dis numerator
- ël nùmer b a l'é dit denominator
- la bara an mes a l'é la linia ëd frassion.
J'operassion
Ansima ai nùmer rassionaj a son definìe doe operassion fondamentaj:
- L'adission, ch'a l'é assossiativa, comutativa e a l'ha n'element neutral 0.
A l'é definìa da
- .
- La multiplicassion, ch'a l'é assossiativa, comutativa e a l'ha n'element neutral 1.
A l'é definìa da
- .
La multiplicassion a l'é distributiva rëspet a l'adission. Stamp:Fin